| 9/11 Truth Top 50 |


Did you miss the introduction to this year’s campaign?

A research study formally printed on April 4, 2009 confirms one of the most key pieces of evidence. This peer-reviewed study confirmed the presence of a significant amount of unreacted nano-thermite particles in multiple samples of WTC dust collected.
Thermite is a high incendiary compound capable of reaching temperatures in excess of 2,500 °C (4,530 °F), much more likely to melt steel in the manner necessary for a controlled demolition.

Thermite is a pyrotechnic composition of a metal powder and a metal oxide that produces an exothermic oxidation-reduction reaction known as a thermite reaction. If aluminium is the reducing agent it is called an aluminothermic reaction. Most varieties are not explosive, but can create bursts of extremely high temperatures focused on a very small area for a short period of time. The thermite is simply a mixture of metal, often called the “fuel” and an oxidizer.

Wikipedia provides a decent definition and actually points out that it is not high explosive by itself.
To see application of thermite The video below is from an episode of Mythbusters in which thermite is used to cut through a car.

Mythbusters whips up a half ton of thermite

The video also shows a bathtub half full of powder was needed for the car to be destroyed. This is one reason that nano-thermite was used. The amount of product would be cut down as nanothermite is highly reactive and more effective.
An article at 911Blogger featured this definition.

Nanothermite (also known as superthermite), simply put, is an ultra-fine-grained (UFG) variant of thermite that can be formulated to be explosive by adding gas-releasing substances. A general rule in chemistry is that the smaller the particles of the reactants, the faster the reaction. Nanothermite, as the name suggests, is thermite in which the particles are so small that they are measured in nanometers (one billionth of a meter).

Returning to the WTC Dust study (a PDF copy of the thermite report can be downloaded here), the abstract of the study outlines the findings well.

Abstract: We have discovered distinctive red/gray chips in all the samples we have studied of the dust produced by the destruction of the World Trade Center. Examination of four of these samples, collected from separate sites, is reported in this paper. These red/gray chips show marked similarities in all four samples. One sample was collected by a Manhattan resident about ten minutes after the collapse of the second WTC Tower, two the next day, and a fourth about a week later. The properties of these chips were analyzed using optical microscopy, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS), and differential scanning calorimetry (DSC). The red material contains grains approximately
100 nm across which are largely iron oxide, while aluminum is contained in tiny plate-like structures. Separation of components using methyl ethyl ketone demonstrated that elemental aluminum is present. The iron oxide and aluminum are intimately mixed in the red material. When ignited in a DSC device the chips exhibit large but narrow exotherms occurring at approximately 430 °C, far below the normal ignition temperature for conventional thermite. Numerous iron-rich spheres are clearly observed in the residue following the ignition of these peculiar red/gray chips. The red portion of these chips is found to be an unreacted thermitic material and highly energetic.

The report goes in detail about the scientific methods used to reach their conclusions. The thermite was discovered in all 4 samples and was found to have a similar concentration, suggesting a relatively uniform application.
A point of clarification must be made that a thermite compound alone could not have brought down the towers, due to the nature of thermite. One point that debunkers are correct on is that thermite is not considered high explosive, but it is high incendiary, an important forensic distinction. High explosives actually move mass out of the way, allowing for the demolition free fall effect. The thermite compound would need to be combined with another form of explosives.
Redacted News blog posed some valid and necessary questions of the thermite evidence.

WHAT NANOTHERMITE ADVOCATES NEED TO DO TO CLARIFY THEIR THEORY
Steven E. Jones and other nanothermite theory advocates should be upfront and truthful about these issues, and clearly elaborate upon the factors missing from their theory that need further fleshing out. It is not good enough to just say “explosive nanothermite” over and over again without explaining exactly what is meant by the term. If they think that incendiary thermite or incendiary nanothermite or low explosive nanothermite or high explosive nanothermite were used in cutter-charges, or some combination, then they should say so. The lack of or degree of explosiveness claimed, whether incendiary, low explosive, or high explosive, is key, because the type of cutter-charge used would depend on this. Once they clarify what they mean by their use of the term “nanothermite”, then they should start describing the quantities of thermite that would have been necessary for the destruction. Only by adding these details to their theory can it be fairly evaluated against alternative theories of the destruction of the buildings of the World Trade Center for the benefit of the wider 9/11 truth community.

The key disconnect is that to generate significant force, high explosives must be combined with the nano-thermite or have to be used simultaneously. Scientifically, this is expressed in terms of combustion velocities. High explosives were needed to produce the destructive concussion force necessary to pulverize concrete.
This gap should be categorized as misinformation as the subject is very technical and the debate gets changed because of the wrong words. The debate gets bogged down because the right information is not defended and the whole case is thrown out by critics, some thing T Mark Hightower wants to avoid also.
Another critique of the thermite theories written by Hightower goes further with some data showing the physical limitations of the compounds and what level of force would be necessary to cause the destructive damage.

But what does other peer-reviewed scientific literature actually have to say about nanothermite? “Nanoscale Aluminum-Metal Oxide (Thermite) Reactions for Application in Energetic Materials,” Central European Journal of Energetic Materials (2010), authored by Davin G. Piercey and Thomas M. Klapötke,

 

identifies the fastest known combustion velocity for a mixture of metal oxide and aluminum: 2,400 meters per second (m/s), in a type of nanothermite made of copper oxide and aluminum. Remember that what Steven Jones found in the dust was iron-oxide/aluminum nanothermite. The authors of this paper make it clear that copper-oxide/aluminum nanothermite is significantly more reactive than the iron-oxide version, and cite a combustion velocity of 895 m/s for an iron-oxide/aluminum nanothermite aerogel. So 895 m/s is the highest velocity yet to be found for an iron-oxide/aluminum nanothermite in the scientific literature, where this velocity is far too low to have played a significant role in the destruction of the Twin Towers by means of its shock waves.

 

Not Powerful Enough

Let’s examine the reason for that important last statement. The “destructive fragmentation effect” of an explosive is its detonation velocity, or the speed of the shock wave through the substance it is traveling in. To significantly fragment a substance, the detonation velocity of the explosive must equal or exceed the sonic velocity (the speed of sound) in the material. For example, the speed of sound in concrete is 3,200 m/s. In steel, the speed of sound is 6,100 m/s. Conventional high explosives such as TNT and RDX have detonation velocities of 6,900 and 8,750 m/s respectively, and are therefore capable of fragmenting concrete and steel, because both 6,900 and 8,750 exceed the sonic velocities of 3,200 m/s required to shatter concrete and 6,100 m/s required to shatter steel. As Dwain Deets has diagrammed, at only 895 m/s, iron-oxide/aluminum nanothermite does not come close to TNT and RDX.

The first critique from above provided this insight on the destructive force of actual high explosives compared to thermite.

The highest values were obtained at zero percent SiO2, so those are the only values I am going to cite. The nanothermite produced by a sol gel process had the highest velocity of 40.5 m/s, compared to the one produced by a simple mixing of the nano-particles with a combustion velocity of 8.8 m/s. (6)

Compare the above combustion velocities of nanothermite with the detonation velocities of high explosives HMX and RDX of 9,100 m/s and 8,750 m/s, respectively, and they are dwarfed by the velocities of the conventional high explosives. Steven Jones appears to be calling the nanothermite reaction explosive only in the sense that it is reacting much faster than regular thermite, but not in the sense that it is anywhere near as explosive as a conventional high explosive. By failing to make this distinction Jones has misled nearly the entire 911 truth movement into believing that nanothermite is a super explosive, possibly even more powerful than conventional high explosives.

This proves that even though nano-thermite is capable of quickly reaching high temperatures, but it cannot produce the explosive force necessary to cause the collapse by itself.
In the video below, one of the scientists responsible for the study, Niels Harrit talks about the amount of thermite used and how it could have been applied.

Danish Scientist Niels Harrit Explaining Thermite Reactions

Another advantage of nano-thermite is the versatility of application methods which the study commented on also. The large amount of thermite necessary would need a good cover for its application.

… the energetic nano-composite can be sprayed or even “painted” onto surfaces, effectively forming an energetic or even explosive paint. The red chips we found in the WTC dust conform to their description of “thin films” of “hybrid inorganic/organic energetic nanocomposite”. Indeed, the descriptive terms “energetic coating” and “nice adherent film” fit very well with our observations of the red-chips which survived the WTC destruction.

Why applying a coat of “paint” works better…

Being able to apply the compound in a spray fashion has advantages as a cover-up method also. The report elaborated on the nature of the compound basically saying it could have been applied in many forms with varying thickness. This would allow the prep work to be hidden in plain sight through different maintenance operations. But as the report says below, it is clear there was not a uniform thickness of application.

We cannot determine at this time, however, whether the thinness of the chips resulted from the application method or the manner of reaction. While the application of a thin film might have suited specific desired outcomes, it is also possible that the quenching effect of the steel the material was in contact with may have prevented a thin film of a larger mass from reacting. The fact that most of the chips have a distinctive gray layer suggests that the unreacted material was in close contact with something else, either its target, a container, or an adhesive.

Whatever the delivery method was and accompanying explosives were are both important, but what can’t be lost is the certainty of finding nano-thermite.
A hallmark of thermite combustion is the copious amount of white smoke that is given off by the reaction, compare the demolition to the Mythbusters car video. The smoke really begins to whiten right before the collapse. The intensification starts before and lasts all the way through, with whiter smoke preceding the collapse wave.

The bottom line is that the quantities of nano-thermite present is prima facie evidence that the collapse of the towers was a controlled demolition. The minutiae of the logistics are important as well, but what’s critical is that there is no legitimate use for the nano-thermite compound other than demolition, especially in the high levels it was found.

If the scientific facts weren’t strange enough, former Underwriter’s Laboratory engineer Kevin Ryan, who was fired for speaking out for 9/11 Truth, discovered numerous coincidences linking NIST experts to nano-thermite research.

The National Institute of Standards and Technology (NIST) has had considerable difficulty determining a politically correct sequence of events for the unprecedented destruction of three World Trade Center (WTC) buildings on 9/11 (Douglas 2006, Ryan 2006, Gourley 2007). But despite a number of variations in NIST’s story, it never considered explosives or pyrotechnic materials in any of its hypotheses. This omission is at odds with several other striking facts; first, the requirement of the national standard for fire investigation (NFPA 921), which calls for testing related to thermite and other pyrotechnics, and second, the extensive experience NIST investigators have with explosive and thermite materials.

One of the most intriguing aspects of NIST’s diversionary posture has been their total lack of interest in explosive or pyrotechnic features in their explanations. Despite the substantial evidence for the use of explosives at the WTC (Jones 2006, Legge and Szamboti 2007), and the extensive expertise in explosives among NIST investigators (Ryan 2007), explosives were never considered in the NIST WTC investigation. Only after considerable criticism of this fact did NIST deign to add one small disclaimer to their final report on the towers, suggesting they found no evidence for explosives.

The extensive evidence that explosives were used at the WTC includes witness testimony (MacQueen 2006), overwhelming physical evidence (Griffin 2005, Hoffman et al 2005, Jones and Legge et al 2008) and simple common sense (Legge 2007). There is also substantial evidence that aluminothermic (thermite) materials were present at the WTC (Jones 2007), and the presence of such materials can explain the existence of intense fire where it would not otherwise have existed. Additionally, despite agreement from all parties that the assumed availability of fuel allowed for the fires in any given location of each of the WTC buildings to last only twenty minutes (NIST 2007), the fires lasted much longer and produced extreme temperatures (Jones and Farrer et al 2008).

These inexplicable fires are a reminder that the WTC buildings were not simply demolished, but were demolished in a deceptive way. That is, the buildings were brought down so as to make it look like the impact of the planes and the resulting fires might have caused their unprecedented, symmetrical destruction. Therefore, shaped charges and other typical explosive configurations were likely used, but there was more to it than that. Those committing the crimes needed to create fire where it would not have existed otherwise, and draw attention toward the part of the buildings where the planes impacted (or in the case of WTC 7, away from the building altogether).

This was most probably accomplished through the use of nano-thermites, which are high-tech energetic materials made by mixing ultra fine grain (UFG) aluminum and UFG metal oxides; usually iron oxide, molybdenum oxide or copper oxide, although other compounds can be used (Prakash 2005, Rai 2005). The mixing is accomplished by adding these reactants to a liquid solution where they form what are called “sols”, and then adding a gelling agent that captures these tiny reactive combinations in their intimately mixed state (LLNL 2000). The resulting “sol-gel” is then dried to form a porous reactive material that can be ignited in a number of ways.

The high surface area of the reactants within energetic sol-gels allows for the far higher rate of energy release than is seen in “macro” thermite mixtures, making nano-thermites “high explosives” as well as pyrotechnic materials (Tillotson et al 1999). Sol-gel nano-thermites, are often called energetic nanocomposites, metastable intermolecular composites (MICs) or superthermite (COEM 2004, Son et al 2007), and silica is often used to create the porous, structural framework (Clapsaddle et al 2004, Zhao et al 2004). Nano-thermites have also been made with RDX (Pivkina et al 2004), and with thermoplastic elastomers (Diaz et al 2003). But it is important to remember that, despite the name, nano-thermites pack a much bigger punch than typical thermite materials.

It turns out that explosive, sol-gel nano-thermites were developed by US government scientists, at Lawrence Livermore National Laboratories (LLNL) (Tillotson et al 1998, Gash et al 2000, Gash et al 2002). These LLNL scientists reported that —

“The sol-gel process is very amenable to dip-, spin-, and spray-coating technologies to coat surfaces. We have utilized this property to dip-coat various substrates to make sol-gel Fe,O,/ Al / Viton coatings. The energetic coating dries to give a nice adherent film. Preliminary experiments indicate that films of the hybrid material are self-propagating when ignited by thermal stimulus”

(Gash et al 2002).

The amazing correlation between floors of impact and floors of apparent failure suggests that spray-on nano-thermite materials may have been applied to the steel components of the WTC buildings, underneath the upgraded fireproofing (Ryan 2008). This could have been done in such a way that very few people knew what was happening. The Port Authority’s engineering consultant Buro Happold, helping with evaluation of the fireproofing upgrades, suggested the use of “alternative materials” (NIST 2005). Such alternative materials could have been spray-on nano-thermites substituted for intumescent paint or Interchar-like fireproofing primers (NASA 2006). It seems quite possible that this kind of substitution could have been made with few people noticing.

Regardless of how thermite materials were installed in the WTC, it is strange that NIST has been so blind to any such possibility. In fact, when reading NIST’s reports on the WTC, and its periodic responses to FAQs from the public, one might get the idea that no one in the NIST organization had ever heard of nano-thermites before. But the truth is, many of the scientists and organizations involved in the NIST WTC investigation were not only well aware of nano-thermites, they actually had considerable connection to, and in some cases expertise in, this exact technology.

Here are the top ten reasons why nano-thermites, and nano-thermite coatings, should have come to mind quickly for the NIST WTC investigators.

1. NIST was working with LLNL to test and characterize these sol-gel nano-thermites, at least as early as 1999 (Tillotson et al 1999).

2. Forman Williams, the lead engineer on NIST’s advisory committee, and the most prominent engineering expert for Popular Mechanics, is an expert on the deflagration of energetic materials and the “ignition of porous energetic materials” (Margolis and Williams 1996, Telengator et al 1998, Margolis and Williams 1999). Nano-thermites are porous energetic materials. Additionally, Williams’ research partner, Stephen Margolis, has presented at conferences where nano-energetics are the focus (Gordon 1999). Some of Williams’ other colleagues at the University of California San Diego, like David J. Benson, are also experts on nano-thermite materials (Choi et al 2005, Jordan et al 2007).

3. Science Applications International (SAIC) is the DOD and Homeland Security contractor that supplied the largest contingent of non-governmental investigators to the NIST WTC investigation. SAIC has extensive links to nano-thermites, developing and judging nano-thermite research proposals for the military and other military contractors, and developing and formulating nano-thermites directly (Army 2008, DOD 2007). SAIC’s subsidiary Applied Ordnance Technology has done research on the ignition of nanothermites with lasers (Howard et al 2005).

In an interesting coincidence, SAIC was the firm that investigated the 1993 WTC bombing, boasting that — “After the 1993 World Trade Center bombing, our blast analyses produced tangible results that helped identify those responsible (SAIC 2004).” And the coincidences with this company don’t stop there, as SAIC was responsible for evaluating the WTC for terrorism risks in 1986 as well (CRHC 2008). SAIC is also linked to the late 1990s security upgrades at the WTC, the Rudy Giuliani administration, and the anthrax incidents after 9/11, through former employees Jerome Hauer and Steven Hatfill.

4. Arden Bement, the metallurgist and expert on fuels and materials who was nominated as director of NIST by President George W. Bush in October 2001, was former deputy secretary of defense, former director of DARPA’s office of materials science, and former executive at TRW.

Of course, DOD and DARPA are both leaders in the production and use of nano-thermites (Amptiac 2002, DOD 2005). And military and aerospace contractor TRW has had a long collaboration with NASA laboratories in the development of energetic materials that are components of advanced propellants, like nano-gelled explosive materials (NASA 2001). TRW Aeronautics also made fireproof composites and high performance elastomer formulations, and worked with NASA to make energetic aerogels.

Additionally, Bement was a professor at Purdue and MIT. Purdue has a thriving program for nano-thermites (Son 2008). And interestingly, at MIT’s Institute for Soldier Nanotechnology, we find Martin Z. Bazant, son of notable “conspiracy debunker” Zdenek P. Bazant (MIT 2008), who does research on granular flows, and the electrochemical interactions of silicon. Zdenek P. Bazant is interested in nanocomposites as well (Northwestern 2008), and how they relate to naval warfare (ONR 2008). MIT was represented at nano-energetics conferences as early as 1998 (Gordon 1998).

Bement was also a director at both Battelle and the Lord Corporation. Battelle (where the anthrax was made) is an organization of “experts in fundamental technologies from the five National Laboratories we manage or co-manage for the US DOE.” Battelle advertises their specialization in nanocomposite coatings (Battelle 2008). The Lord Corporation also makes high-tech coatings for military applications (Lord 2008). In 1999, Lord Corp was working with the Army and NASA on “advanced polymer composites, advanced metals, and multifunctional materials” (Army 1999).

5. Hratch Semerjian, long-time director of NIST’s chemical division, was promoted to acting director of NIST in November 2004, and took over the WTC investigation until the completion of the report on the towers. Semerjian is closely linked to former NIST employee Michael Zachariah, perhaps the world’s most prominent expert on nano-thermites (Zachariah 2008). In fact, Semerjian and Zachariah co-authored ten papers that focus on nano-particles made of silica, ceramics and refractory particles. Zachariah was a major player in the Defense University Research Initiative on Nanotechnology (DURINT), a groundbreaking research effort for nano-thermites.

6. NIST has a long-standing partnership with NASA for the development of new nano-thermites and other nano-technological materials. In fact, Michael Zachariah coordinates this partnership (CNMM 2008).

7. In 2003, two years before the NIST WTC report was issued, the University of Maryland College Park (UMCP) and NIST signed a memorandum of understanding to develop nano-technologies like nano-thermites (NIST 2003). Together, NIST and UMCP have done much work on nano-thermites (NM2 2008).

8. NIST has their own Center for Nanoscale Science and Technology (CNST 2008). Additionally, NIST’s Reactive Flows Group did research on nanostructured materials and high temperature reactions in the mid-nineties (NRFG 1996).

9. Richard Gann, who did the final editing of the NIST WTC report, managed a project called “Next-Generation Fire Suppression Technology Program”, both before and after 9/11. Andrzej Miziolek, another of the world’s leading experts on nano-thermites (Amptiac 2002), is the author of “Defense Applications of Nanomaterials”, and also worked on Richard Gann’s fire suppression project (Gann 2002). Gann’s project was sponsored by DOD’s Strategic Environmental Research and Development Program (SERDP), an organization that sponsored a number of LLNL’s nano-thermite projects (Simpson 2002, Gash et al 2003).

10. As part of the Federal Laboratory Consortium for Technology Transfer, NIST partners with the Naval Surface Warfare Center at Indian Head (NSWC-IH) on Chemical Science and Technology (FLCTT 2008). NSWC-IH is probably the most prominent US center for nano-thermite technology (NSWC 2008). In 1999, Jan Puszynski, a scientist working for the DURINT program, helped NSWC-IH design a pilot plant to produce nano-size aluminum powder. It was reported that “At that time, this was [the] only reliable source of aluminum nanopowders in the United States” (SDSMT 2001), however, private companies like Argonide and Technanogy were also known to have such capabilities.

Among an interesting group of contractors that NSWC-IH hired in 1999 were SAIC, Applied Ordnance, Battelle, Booz Allen Hamilton, Mantech, Titan, Pacific Scientific Energetic (see below), and R Stresau Laboratories for “demolition materials” (NSWC 2000).

A tragic coincidence left William Caswell, an employee of NSWC-IH, dead on the plane said to have hit the Pentagon (Flight 77). He had for many years worked on “deep-black” projects at NSWC-IH (Leaf 2007).

The presence of Pacific Scientific Energetics (PSE) in this list of 1999 NSWC-IH contractors is interesting because PSE was the parent company of Special Devices, Inc (SDI). SDI specializes in explosives for defense, aerospace and mining applications, and was acquired in 1998 by John Lehman, 9/11 Commissioner, member of the Project for a New American Century, and former Secretary of the Navy (SDI 2008). Lehman divested in 2001.

With this in mind, it is worthwhile to reiterate that nano-thermite materials were very likely used in the deceptive demolition of the WTC buildings, but most certainly played only a part in the plan. However, other high-tech explosives were available to those who had access to nano-thermite materials at the time. Like SDI, several other organizations with links to military, space and intelligence programs (e.g. In-Q-Tel, Orbital Science) have access to many types of high-tech explosives to cut high-strength bolts and produce pyrotechnic events (Goldstein 2006). These organizations also have connections to those who could have accessed the buildings, like WTC tenant Marsh & McLennan and former NASA administrator and Securacom director, James Abrahamson.

In any case, it is important for those seeking the truth about 9/11 to consider what organizations and people had access to the technologies that were used to accomplish the deceptive demolition of the WTC buildings. It is also important to recognize the links between those who had access to the technologies, those who had access to the buildings, and those who produced the clearly false official reports.

To that end we should note that NIST had considerable connections to nano-thermites, both before and during the WTC investigation. It is therefore inexplicable why NIST did not consider such materials as an explanation for the fires that burned on 9/11, and long afterward at Ground Zero. This fact would not be inexplicable, of course, if those managing the NIST investigation knew to not look, or test, for such materials.

Alex Jones Interviewing Study Participant Niels Harrit (Part 1)

Alex Jones Interviewing Study Participant Niels Harrit (Part 2)

Chemical Engineer Mark Basile – The first scientist who found thermite in the World Trade Center

Richard Gage, a San Francisco Bay area based architect and the founder of Architects & Engineers for 9/11 Truth

1cWvuUHtG6qxpEAyHkLuomEtFPb4uqdiu

If you enjoy reading the information we bring you, please consider donating to WTF News via Bitcoin. Any donations are appreciated and go directly to expanding our capabilities.